ON BAIRE-1/4 FUNCTIONS

VASSILIKI FARMAKI

ABSTRACT. We give descriptions of the spaces D(K) (i.e. the space of differences of bounded semicontinuous functions on K) and especially of $B_{1/4}(K)$ (defined by Haydon, Odell and Rosenthal) as well as for the norms which are defined on them. For example, it is proved that a bounded function on a metric space K belongs to $B_{1/4}(K)$ if and only if the ω^{th} -oscillation, $\operatorname{osc}_{\omega} f$, of f is bounded and in this case $\|f\|_{1/4} = \||f| + \widetilde{\operatorname{osc}}_{\omega} f\|_{\infty}$. Also, we classify $B_{1/4}(K)$ into a decreasing family $(S_{\xi}(K))_{1 \leq \xi < \omega_1}$ of Banach spaces whose intersection is equal to D(K) and $S_1(K) = B_{1/4}(K)$. These spaces are characterized by spreading models of order ξ equivalent to the summing basis of c_0 , and for every function f in $S_{\xi}(K)$ it is valid that $\operatorname{osc}_{\omega\xi} f$ is bounded. Finally, using the notion of null-coefficient of order ξ sequence, we characterize the Baire-1 functions not belonging to $S_{\xi}(K)$.

Introduction

In recent years the study of the first Baire class, $B_1(K)$, of bounded functions on a metric space K led to the definition of interesting subclasses ([H-O-R], [K-L], [F1]). The study of these subclasses revealed significant properties of their elements ([C-M-R], [R2], [F1], [F2]) and provided applications, such as the c_0 -dichotomy theorem of Rosenthal ([R1]).

Here we study some subclasses of D(K), and especially $B_{1/4}(K)$, of $B_1(K)$. By D(K) is denoted the class of all functions on K which are differences of bounded semicontinuous functions. A classical result of Baire yields that $f \in D(K)$ if and only if there exists a sequence (f_n) of continuous functions on K satisfying

(1)
$$\sup_{x \in K} \sum_{n} |f_n(x)| < \infty \text{ and } f = \sum_{n} f_n.$$

The class D(K) is a Banach algebra with respect to the $\|\cdot\|_D$ -norm defined as

$$||f||_D = \inf \left\{ \sup_{x \in K} \sum_n |f_n(x)| : (f_n) \subseteq C(K) \text{ satisfying } (1) \right\}.$$

The subclass $B_{1/4}(K)$ was first defined in [H-O-R] as follows:

$$B_{1/4}(K) = \{ f : K \to \mathbf{R} : \text{there exists } (F_n) \subseteq D(K) \text{ such that } ||F_n - f||_{\infty} \to 0 \}$$

and $\sup_n ||F_n||_D < \infty \}.$

Received by the editors August 22, 1994.

1991 Mathematics Subject Classification. Primary 46B03; Secondary 46B25.

This class is a Banach algebra with respect to the $\|\cdot\|_{1/4}$ -norm, given by

$$||f||_{1/4} = \inf \left\{ \sup_{n} ||F_n||_D : (F_n) \subseteq D(K) \text{ and } ||F_n - f||_{\infty} \to 0 \right\}.$$

In the first section we describe the precise connection between the summing basis (s_n) of c_0 and the normed space $(D(K), \|\cdot\|_D)$; so it is proved in Proposition 1.1 that $f \in D(K)$ if and only if there is a sequence (f_n) of continuous functions on K so that $f_n \to f$ pointwise and there is C > 0 such that

(2)
$$\left\| \sum_{i=1}^{k} \lambda_i f_{n_i} \right\|_{\infty} \le C \left\| \sum_{i=1}^{k} \lambda_i s_i \right\|$$

for every $k, n_1, \ldots, n_k \in \mathbf{N}$ and scalars $\lambda_1, \ldots, \lambda_k$.

If this occurs then

$$||f||_D = \inf \left\{ C > 0 : \text{ there exists } (f_n) \subseteq C(K) \text{ satisfying } (2) \right\}.$$

Since for every sequence of continuous functions defined on a compact metric space K and converging pointwise to a discontinuous function, there exists a subsequence (f_n) and $\mu > 0$ such that

(3)
$$\mu \left\| \sum_{i=1}^{k} \lambda_i s_i \right\| \le \left\| \sum_{i=1}^{k} \lambda_i f_{n_i} \right\|_{\infty}$$

for $k, n_1, \ldots, n_k \in \mathbf{N}$ and scalars $\lambda_1, \ldots, \lambda_k$ ([H-O-R], [R1]), it follows that the functions in $D(K) \setminus C(K)$ (K compact) are characterized as pointwise limits of sequences of continuous functions equivalent to the summing basis of c_0 (Remark 1.2).

In the case of $B_{1/4}(K)$, where K is a compact metric space, the functions are characterized as pointwise limits of sequences of continuous functions on K with a property weaker than (2), namely one for which the inequality (2) is valid only for (n_1, \ldots, n_k) in the Schreier family \mathcal{F}_1 (Theorem 2.1). Moreover, if we set

$$||f||_s^1 = \inf \left\{ C > 0 : \text{there exists } (f_n) \subseteq C(K) \text{ such that } f_n \to f \right\}$$
pointwise and $\left\| \sum_{i=1}^k \lambda_i f_{n_i} \right\|_{\infty} \leq C \left\| \sum_{i=1}^k \lambda_i s_i \right\|$ for every
 $(n_1, \dots, n_k) \in \mathcal{F}_1$ and scalars $\lambda_1, \dots, \lambda_k \right\}$,

then $\|\cdot\|_s^1$ is a norm on $B_{1/4}(K)$ equivalent to the norm $\|\cdot\|_{1/4}$. This answers in the affirmative a question raised by Haydon, Odell and Rosenthal in [H-O-R]. From this result and (3) we have the characterization of functions in $B_{1/4}(K) \setminus C(K)$ (K compact) as pointwise limits of sequences of continuous functions generating spreading models equivalent to the summing basis of c_0 .

More generally, we define analogously the spaces $S_{\xi}(K)$ and the norms $\|\cdot\|_s^{\xi}$ on them, employing the higher order Schreier family \mathcal{F}_{ξ} , for $1 \leq \xi < \omega_1$, as defined by Alspach and Argyros ([A-A]). According to Proposition 3.4, $(S_{\xi}(K), \|\cdot\|_s^{\xi})$ are Banach spaces, which, for separable metric spaces K, constitute a decreasing hierarchy whose intersection is equal to D(K) (Theorem 3.8) and of course $S_1(K) = B_{1/4}(K)$. We further provide alternative descriptions of the spaces $S_{\xi}(K)$, $1 \leq \xi < \omega_1$, and characterize the Baire-1 functions not belonging to $S_{\xi}(K)$ (Theorem 3.11), employing the notion of a null-coefficient of order ξ sequence, defined in [F2].

Because of Mazur's theorem, $S_{\xi}(K)$ is actually a Banach space invariant. That is, if X is a separable Banach space, $x^{**} \in X^{**} \setminus X$, and $K = Ba(X^*, w^*)$, then if

 $f = x^{**}|K, f \in S_{\xi}(K)$ if and only if there exists a sequence (x_n) in X such that (x_n) generates a spreading model of order ξ equivalent to (s_n) and converges in the w^* -topology to f. Moreover, then

$$|f|_s^{\xi} = \inf\{C > 0 : \text{there exists } (x_n) \subset X \text{ and such that } x_n \xrightarrow{w^*} f$$

and $\|\sum_{i=1}^k \lambda_i x_{n_i}\|_{\infty} \leq C \|\sum_{i=1}^k \lambda_i s_i\| \text{ for every } (n_i, \dots, n_k) \in \mathcal{F}_{\xi} \text{ and scalars } \lambda_1, \dots, \lambda_k\}.$

A nice relation between the space $(B_{1/4}(K), \|\cdot\|_{1/4})$ and the transfinite oscillations of a function is given in Theorem 2.9. Rosenthal in [R1] defined for every function f the α^{th} -oscillation, $\operatorname{osc}_{\alpha} f$, of f for every ordinal α (cf. Definition 2.5).In [R2] the author proved the following structural result for D(K): Let f be a real bounded function on an infinite metric space K. Then $f \in D(K)$ if and only if there exist an ordinal α such that $\operatorname{osc}_{\alpha} f$ is bounded and $\operatorname{osc}_{\alpha} f = \operatorname{osc}_{\beta} f$ for all $\beta > \alpha$. Letting τ be the least such α , then

$$||f||_D = ||f| + \operatorname{osc}_{\tau} f||_{\infty} \text{ for all } f \in D(K).$$

We prove an analogous structural result for the case of $B_{1/4}(K)$. Precisely, we have the following theorem: Let f be a real bounded function on a metric space K. Then $f \in B_{1/4}(K)$ if and only if $\operatorname{osc}_{\omega} f$ is bounded. In this case

$$||f||_{1/4} = ||f| + \widetilde{\operatorname{osc}}_{\omega} f||_{\infty} \text{ for } f \in B_{1/4}(K).$$

According to the principal result in [F2], $\operatorname{osc}_{\omega^{\xi}} f$ is bounded for every function f in $S_{\xi}(K)$ and every ordinal ξ . It is an open problem whether the functions in $S_{\xi}(K)$ are characterized by this property.

1. Differences of Bounded Semicontinuous Functions

Let K be a metric space. We denote by C(K) the class of continuous functions on K and by $B_1(K)$ the space of bounded first Baire class functions on K (i.e. the pointwise limits of uniformly bounded sequences of continuous functions).

An important subclass of $B_1(K)$ is the class of differences of bounded semicontinuous functions on K, denoted by D(K). It is easy to see that

$$D(K) = \left\{ f \in B_1(K) : f = u - v, \text{ where } u, v \ge 0 \text{ are bounded and lower semicontinuous functions} \right\}.$$

The class D(K) is a Banach algebra with respect to the norm $\|\cdot\|_D$, defined as follows:

$$||f||_D = \inf \Big\{ ||u+v||_\infty : f = u - v \text{ for } u,v \ge 0, \text{ bounded and lower semicontinuous functions} \Big\}.$$

This infimum is attained according to [R1]. A result of Baire gives that

$$D(K) = \left\{ f \in B_1(K) : \text{there exists } (f_n) \text{ in } C(K) \text{ such that } f = \sum_n f_n \\ \text{pointwise and } \left\| \sum_n |f_n| \right\|_{\infty} < \infty \right. \right\}$$

and it follows that

$$||f||_D = \inf \left\{ \left\| \sum_n |f_n| \right\|_{\infty} : (f_n) \subseteq C(K) \text{ and } f = \sum_n f_n \text{ pointwise} \right\}$$

for every $f \in D(K)$ (see [R2]). It is easy to see that $||f||_{\infty} \leq ||f||_{D}$ for every $f \in D(K)$ but the two norms are not equivalent in general.

In the following proposition we give the fundamental connection between the summing basis (s_n) of c_0 and the functions in D(K), as well as between (s_n) and the norm $\|\cdot\|_{D}$.

1.1. **Proposition.** Let K be a metric space. Then

$$D(K) = \left\{ f \in B_1(K): \text{ there exists } (f_n) \text{ in } C(K) \text{ and } C > 0 \text{ so that } f_n \to f \right.$$

$$pointwise \text{ and } \left\| \sum_{i=1}^n \lambda_i f_i \right\|_{\infty} \leq C \left\| \sum_{i=1}^n \lambda_i s_i \right\| \text{ for all }$$

$$n \in \mathbf{N} \text{ and scalars } \lambda_1, \dots, \lambda_n \right\},$$

where (s_n) is the summing basis of c_0 . Also, for every $f \in D(K)$,

$$||f||_D = ||f||_s = \inf \left\{ C > 0: \text{ there exists } (f_n) \subseteq C(K) \text{ such that } f_n \to f \\ \text{pointwise and } ||\sum_{i=1}^n \lambda_i f_i||_{\infty} \le C ||\sum_{i=1}^n \lambda_i s_i|| \\ \text{for all } n \in \mathbf{N} \text{ and scalars } \lambda_1, \dots, \lambda_n \right\}.$$

Proof. If $f \in D(K)$ then there exists a sequence $(g_n)_{n=1}^{\infty}$ in C(K) such that $f = \sum_{n=1}^{\infty} g_n$ and $C = \|\sum_n |g_n|\|_{\infty} < \infty$. Set $f_n = \sum_{i=1}^n g_i$ for every $n \in \mathbb{N}$. Of course, $f_n \to f$ pointwise and

$$\left\| \sum_{i=1}^{n} \lambda_i f_i \right\|_{\infty} = \left\| \sum_{i=1}^{n} (\lambda_i + \dots + \lambda_n) g_i \right\|_{\infty} \le \left\| \sum_{i=1}^{n} |g_i| \right\|_{\infty} \cdot \left\| \sum_{i=1}^{n} \lambda_i s_i \right\| \le C \cdot \left\| \sum_{i=1}^{n} \lambda_i s_i \right\|.$$

Hence, $||f||_s \leq ||f||_D$ for every $f \in D(K)$.

On the other hand, if there exist (f_n) in C(K) and C > 0 such that $f_n \to f$ pointwise and $\|\sum_{i=1}^n \lambda_i f_i\|_{\infty} \le C\|\sum_{i=1}^n \lambda_i s_i\|$ for every $n \in \mathbb{N}$ and scalars $\lambda_1, \ldots, \lambda_n$, then if we set $g_0 = 0$ and $g_n = f_n - f_{n-1}$ for every $n \in \mathbb{N}$, we have that $\sum_{n=1}^{\infty} g_n = f$. Also, for $x \in K$ and $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} |g_i|(x) = \sum_{i=1}^{n} |f_i - f_{i-1}|(x) = \sum_{i=1}^{n} \varepsilon_i (f_i - f_{i-1})(x)$$
$$= \left| \sum_{i=1}^{n} (\varepsilon_i - \varepsilon_{i+1}) f_i \right| (x) \le C,$$

where $\varepsilon_i \in \{-1, 1\}$ so that $\varepsilon_i(f_i - f_{i-1})(x) \ge 0$ for every $i = 1, \dots, n$ and $\varepsilon_{n+1} = 0$. Hence, we have that $||f||_D \le ||f||_s$ for every $f \in D(K)$.

1.2. Remark. It is known ([H-O-R], [R1]) that, for a compact metric space K, every bounded sequence (f_n) in C(K) converging pointwise to a discontinuous function f has a basic subsequence (g_n) which dominates the summing basis (s_n) of c_0 , i.e. there exists $\mu > 0$ such that $\mu \| \sum_{i=1}^n \lambda_i s_i \| \leq \| \sum_{i=1}^n \lambda_i g_i \|_{\infty}$ for every $n \in \mathbb{N}$, $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Hence, for a compact metric space K,

$$D(K) \setminus C(K) = \left\{ f : K \to \mathbf{R} : \text{there exists } (f_n) \subseteq C(K) \text{ such that } f_n \to f \text{ pointwise and } (f_n) \text{ is equivalent to } (s_n) \right\}.$$

This result has been proved in [R1] also. Using Mazur's theorem we have that every uniformly bounded sequence (f_n) converging pointwise to a function f in $D(K) \setminus C(K)$ has a convex block subsequence equivalent to (s_n) .

2. Baire-1/4 Functions

As we mentioned before, the supremum norm is not equivalent, in general, to the $\|\cdot\|_D$ -norm in D(K). The closure of D(K) in $(B_1(K), \|\cdot\|_{\infty})$ has been denoted by $B_{1/2}(K)$ in [H-O-R]. In the same paper the authors defined the subclass $B_{1/4}(K)$ of $B_1(K)$ as follows:

$$B_{1/4}(K) = \Big\{ \ f \in B_1(K) : \text{there exists } (F_n) \subseteq D(K) \text{ such that } \|F_n - f\|_{\infty} \to 0 \\ \text{and } \sup_n \|F_n\|_D < \infty \ \Big\}.$$

The space $B_{1/4}(K)$ is complete with respect to the norm

$$||f||_{1/4} = \inf \left\{ \sup_{n} ||F_n||_D : (F_n) \subseteq D(K) \text{ and } ||F_n - f||_{\infty} \to 0 \right\}.$$

In the following theorem we will give a characterization of $B_{1/4}(K)$ and we will define the $\|\cdot\|_s^1$ -norm on it, in analogy to D(K) (Proposition 1.1). We will prove that this norm is equivalent to the $\|\cdot\|_{1/4}$ -norm answering affirmatively the question raised by Haydon, Odell and Rosenthal in [H-O-R]. The techniques of this proof have been employed before in [F1]. The additional work here is to establish the relation between the norms. For completeness we give the proof in detail. We will use the Schreier family \mathcal{F}_1 which is:

$$\mathcal{F}_1 = \left\{ (n_1, \dots, n_k) : k < n_1 < \dots < n_k \in \mathbf{N} \right\}.$$

2.1. **Theorem.** Let K be a compact metric space. Then

$$B_{1/4}(K) = \left\{ f \in B_1(K) : \text{there exists } (f_n) \text{ in } C(K) \text{ and } C > 0 \text{ so that } f_n \to f \\ \text{pointwise and } \left\| \sum_{i=1}^k \lambda_i f_{n_i} \right\|_{\infty} \le C \left\| \sum_{i=1}^k \lambda_i s_i \right\| \text{ for } \\ \text{every } (n_1, \dots, n_k) \in \mathcal{F}_1 \text{ and scalars } \lambda_1, \dots, \lambda_k \right\}.$$

Also, defining for $f \in B_{1/4}(K)$

$$||f||_{s}^{1} = \inf \left\{ C > 0: \text{ there exists } (f_{n}) \text{ in } C(K) \text{ such that } f_{n} \to f \text{ pointwise} \right.$$

$$\left. \text{and } \left\| \sum_{i=1}^{k} \lambda_{i} f_{n_{i}} \right\|_{\infty} \leq C \left\| \sum_{i=1}^{k} \lambda_{i} s_{i} \right\| \text{ for every} \right.$$

$$\left. (n_{1}, \ldots, n_{k}) \in \mathcal{F}_{1} \text{ and scalars } \lambda_{1}, \ldots, \lambda_{k} \right\}.$$

 $\|\cdot\|_s^1$ is a norm on $B_{1/4}(K)$ equivalent to the norm $\|\cdot\|_{1/4}$. Moreover,

$$||f||_s^1 \le ||f||_{1/4} \le 4||f||_s^1$$
 for every $f \in B_{1/4}(K)$.

Proof. Let $f \in B_{1/4}(K)$. According to the definition of $(B_{1/4}(K), \|\cdot\|_{1/4})$, for every $\delta > 0$ there exists a sequence (F_m) in D(K) so that $\|F_m - f\|_{\infty} \to 0$ and $\sup_m \|F_m\|_D < \|f\|_{1/4} + \delta$. Let $M = \|f\|_{1/4} + \delta$ and (ϵ_m) a decreasing sequence of positive numbers such that $\epsilon_m < \frac{\delta}{2m}$ and $\sum_{i=m+1}^{\infty} \epsilon_i < \epsilon_m$ for every $m \in \mathbb{N}$. We can assume that $\|F_{m+1} - F_m\|_{\infty} < \epsilon_{m+1}$ for every $m \in \mathbb{N}$. Hence, for every $m \in \mathbb{N}$ there exists a sequence $(g_n^m)_{n=1}^{\infty} \subseteq C(K)$ converging pointwise to $F_{m+1} - F_m$ and $\|g_n^m\|_{\infty} < \epsilon_{m+1}$ for all $n \in \mathbb{N}$.

Since $F_1 \in D(K)$, by Proposition 1.1, there exists a sequence (f_n^1) in C(K) converging pointwise to F_1 and satisfying

$$\left\| \sum_{i=1}^{k} \lambda_i f_i^1 \right\|_{\infty} \le M \left\| \sum_{i=1}^{k} \lambda_i s_i \right\|$$

for all $k \in \mathbf{N}$ and scalars $\lambda_1, \ldots, \lambda_k$. The sequence $(f_n^1 + g_n^1)$ converges pointwise to F_2 . Using Mazur's theorem and the fact that $F_2 \in D(K)$, we can find convex block subsequences $(f_n^{1,2}), (g_n^{1,2})$ of $(f_n^1), (g_n^1)$ respectively such that if $f_n^2 = f_n^{1,2} + g_n^{1,2}$ for every $n \in \mathbf{N}$ then $f_n^2 \to F_2$ pointwise and

$$\left\| \sum_{i=1}^{k} \lambda_i f_i^2 \right\|_{\infty} \le M \left\| \sum_{i=1}^{k} \lambda_i s_i \right\|$$

for every $k \in \mathbf{N}$ and scalars $\lambda_1, \ldots, \lambda_k$. Now, since $f_n^2 + g_n^2$ converges to F_3 , there exist convex block subsequences $(f_n^{2,3}), (g_n^{2,3})$ of $(f_n^2), (g_n^2)$ respectively, such that if $f_n^3 = f_n^{2,3} + g_n^{2,3}$ for every $n \in \mathbf{N}$ then $f_n^3 \to F_3$ pointwise and

$$\left\| \sum_{i=1}^{k} \lambda_i f_i^3 \right\|_{\infty} \le M \left\| \sum_{i=1}^{k} \lambda_i s_i \right\|$$

for every $k \in \mathbf{N}$ and scalars $\lambda_1, \ldots, \lambda_k$. Let $(f_n^{1,2,3}), (g_n^{1,2,3})$ be the convex block subsequences of $(f_n^{1,2})$ and $(g_n^{1,2})$ respectively, such that $f_n^{2,3} = f_n^{1,2,3} + g_n^{1,2,3}$ for every $n \in \mathbf{N}$. Hence $f_n^3 = f_n^{1,2,3} + g_n^{1,2,3} + g_n^{2,3}$ for every $n \in \mathbf{N}$. We continue in the obvious way to construct $f_n^{m,\ldots,k}$ and $g_n^{m,\ldots,k}$ for every $m,k,n \in \mathbf{N}$ with $m \leq k$, so that $(g_n^{m,\ldots,k}), (f_n^{m,\ldots,k})$ to be convex block subsequences of $(g_n^{m,\ldots,l}), (f_n^{m,\ldots,l})$ respectively for every $m,l,k \in \mathbf{N}$ with $m \leq l \leq k$ and

(*)
$$f_n^{m,\dots,k} = f_n^{m-1,m,\dots,k} + g_n^{m-1,m,\dots,k}$$

for every $n, k, m \in \mathbf{N}$ with $1 < m \le k$. Also, for every $m \in \mathbf{N}$, we construct the sequence $(f_n^m)_{n=1}^{\infty}$ converging pointwise to F_m and

$$\left\| \sum_{i=1}^{k} \lambda_i f_i^m \right\|_{\infty} \le M \left\| \sum_{i=1}^{k} \lambda_i s_i \right\|$$

for every $k \in \mathbf{N}$ and scalars $\lambda_1, \ldots, \lambda_k$. Finally, we set

$$h_n^m = f_n^{m,\dots,n}$$
 and $d_n^m = g_n^{m\dots,n}$

for every $m, n \in \mathbf{N}$ with $m \leq n$.

Then, for every $m \in \mathbf{N}$, $(h_n^m)_{n=m}^{\infty}$, $(d_n^m)_{n=m}^{\infty}$ are convex block subsequences of $(f_n^m)_{n=1}^{\infty}$, $(g_n^m)_{n=1}^{\infty}$ respectively, hence $(h_n^m)_{n=m}^{\infty}$ converges pointwise to F_m , $\|d_n^m\|_{\infty}$ $< \epsilon_{m+1}$ for every $m, n \in \mathbf{N}$ with $m \le n$ and $(d_n^m)_{n=m}^{\infty}$ converges pointwise to $F_{m+1} - F_m$. Also, according to (*), we have that

$$h_n^m = h_n^{m-1} + d_n^{m-1} = h_n^l + d_n^l + \dots + d_n^{m-1}$$

for every $n, m, l \in \mathbf{N}$ with $l < m \le n$.

We set $h_n = h_n^n$ for every $n \in \mathbf{N}$. Thus $h_n = h_n^m + d_n^m + \cdots + d_n^{n-1}$ for every $m, n \in \mathbf{N}$ with m < n. It is easy to prove that (h_n) converges pointwise to f. If $(n_1, \ldots, n_k) \in \mathcal{F}_1$ and $\lambda_1, \lambda_2, \ldots, \lambda_k$ are scalars then

$$\left\| \sum_{i=1}^k \lambda_i h_{n_i} \right\|_{\infty} \leq \left\| \sum_{i=1}^k \lambda_i h_{n_i}^k \right\|_{\infty} + \left\| \sum_{i=1}^k \lambda_i \left(d_{n_i}^k + \dots + d_{n_i}^{n_i - 1} \right) \right\|_{\infty}.$$

First, since $(h_n^k)_{n=k}^{\infty}$ is a convex block subsequence of $(f_n^k)_{n=1}^{\infty}$, we have from (**) that

$$\left\| \sum_{i=1}^k \lambda_i h_{n_i}^k \right\|_{\infty} \le M \left\| \sum_{i=1}^k \lambda_i s_i \right\|.$$

Secondly,

$$\left\| \sum_{i=1}^{k} \lambda_{i} \left(d_{n_{i}}^{k} + \dots + d_{n_{i}}^{n_{i}-1} \right) \right\|_{\infty} \leq \epsilon_{k} \cdot \sum_{i=1}^{k} |\lambda_{i}|$$

$$\leq 2k\epsilon_{k} \left\| \sum_{i=1}^{k} \lambda_{i} s_{i} \right\| < \delta \left\| \sum_{i=1}^{k} \lambda_{i} s_{i} \right\|.$$

Hence

$$\left\| \sum_{i=1}^k \lambda_i h_{n_i} \right\|_{\infty} \le (\|f\|_{1/4} + 2\delta) \cdot \left\| \sum_{i=1}^k \lambda_i s_i \right\|.$$

This gives

$$||f||_s^1 \le ||f||_{1/4} + 2\delta$$
 for every $\delta > 0$

and finally

$$||f||_s^1 \le ||f||_{1/4}$$
 for every $f \in B_{1/4}(K)$.

On the other hand, let (f_n) be a sequence in C(K) converging pointwise to f and C > 0 such that

$$\left\| \sum_{i=1}^{k} \lambda_i f_{n_i} \right\|_{\infty} \le C \left\| \sum_{i=1}^{k} \lambda_i s_i \right\|$$

for every $(n_1, \ldots, n_k) \in \mathcal{F}_1$ and scalars $\lambda_1, \ldots, \lambda_k$. According to a characterization of functions in $B_{1/4}(K)$ given by Haydon, Odell and Rosenthal in [H-O-R], a function f belongs to $B_{1/4}(K)$ if for $\epsilon > 0$ there exists a sequence $(g_n)_{n=0}^{\infty}$ in C(K) with $g_0 = 0$, converging pointwise to f and such that for every subsequence (g_{n_i}) of (g_n) and $x \in K$ to have

$$\sum_{j \in B((n_i), x)} |g_{n_{j+1}}(x) - g_{n_j}(x)| \le M,$$

where

$$B((n_i), x) = \{ j \in \mathbf{N} : |g_{n_{j+1}}(x) - g_{n_j}(x)| \ge \epsilon \}.$$

In this case, it is easy to see that $||f||_{1/4} \leq 4M$.

For $\epsilon > 0$, let m be an integer such that $m > C/\epsilon$. Set $g_n = f_{2m+n}$ for every $n \in \mathbb{N}$. Then, for every strictly increasing sequence (n_i) in \mathbb{N} and $x \in K$ we claim that $\#B((n_i), x) < m$. Indeed, if $j_1, \ldots, j_m \in B((n_i), x)$, then

$$m \cdot \epsilon \le \sum_{i=1}^{m} |g_{n_{j_i+1}}(x) - g_{n_{j_i}}(x)| = \sum_{i=1}^{m} \varepsilon_j (f_{2m+n_{j_i+1}} - f_{2m+n_{j_i}})(x) \le C,$$

where $\varepsilon_1, \ldots, \varepsilon_m \in \{-1, 1\}$), so that $\varepsilon_j(f_{2m+n_{j_i+1}} - f_{2m+n_{j_i}})(x) \ge 0$, a contradiction. Hence $\#B((n_i), x) < m$ and thus

$$\sum_{j \in B((n_i), x)} |g_{n_{j+1}}(x) - g_{n_j}(x)| \le C.$$

Hence
$$f \in B_{1/4}(K)$$
 and $||f||_{1/4} \le 4 ||f||_s^1$.

2.2. Remark. It is easy to prove (see [F1]) that a sequence (x_n) in a Banach space X has a subsequence generating a spreading model equivalent to the summing basis (s_n) if and only if it has a subsequence (y_n) with the following property:

there exist $\mu, C > 0$ such that

$$\mu \left\| \sum_{i=1}^{k} \lambda_i s_i \right\| \le \left\| \sum_{i=1}^{k} \lambda_i y_{n_i} \right\| \le C \left\| \sum_{i=1}^{k} \lambda_i s_i \right\|$$

for every $(n_1, \ldots, n_k) \in \mathcal{F}_1$ and scalars $\lambda_1, \ldots, \lambda_k$.

Hence, it follows from the previous theorem and Remark 1.2, for a compact metric space K that

$$B_{1/4}(K) \backslash C(K) = \Big\{ f \in B_1(K) : \text{there exists } (f_n) \subseteq C(K) \text{ such that } f_n \to f \\ \text{pointwise and } (f_n) \text{ generates spreading} \\ \text{model equivalent to } (s_n) \Big\}.$$

This result has been proved in [F1] also. Furthermore, it has been proved in [H-O-R] that every uniformly bounded sequence (f_n) in C(K) converging pointwise to a function in $B_{1/4}(K) \setminus C(K)$ has a convex block subsequence generating a spreading model equivalent to (s_n) .

In the following proposition we will give another description of $B_{1/4}(K)$ and we will prove the equality of the norm $\|\cdot\|_s^1$ with a norm on $B_{1/4}(K)$ analogous to the $\|\cdot\|_D$ -norm on D(K).

2.3. **Proposition.** For every compact metric space K, a function $f: K \to \mathbf{R}$ belongs to $B_{1/4}(K)$ if and only if there exists (f_n) in C(K) such that $f = \sum_{n=1}^{\infty} f_n$ pointwise and for $n_0 = f_0 = 0$,

$$\sup \left\{ \left\| \sum_{i=1}^k |f_{n_{i-1}+1} + \dots + f_{n_i}| \right\|_{\infty} : (n_1, \dots, n_k) \in \mathcal{F}_1 \right\} < \infty.$$

Also, for every $f \in B_{1/4}(K)$ we have

$$||f||_{s}^{1} = ||f||_{D}^{1} = \inf \left\{ \sup \left\{ \left\| \sum_{i=1}^{k} |f_{n_{i-1}+1} + \dots + f_{n_{i}}| \right\|_{\infty} : (n_{1}, \dots, n_{k}) \in \mathcal{F}_{1} \right\} : (f_{n}) \subseteq C(K) \text{ with } f = \sum_{n=1}^{\infty} f_{n} \right\}.$$

Proof. If $f \in B_{1/4}(K)$ then for every $\epsilon > 0$, from the previous theorem, there exists $(g_n)_{n=0}^{\infty} \subseteq C(K)$, $g_0 = 0$, such that $g_n \to f$ pointwise and

$$\left\| \sum_{i=1}^{k} \lambda_i g_{n_i} \right\|_{\infty} \le \left(\|f\|_s^1 + \epsilon \right) \left\| \sum_{i=1}^{k} \lambda_i s_i \right\|$$

for every $(n_1, \ldots, n_k) \in \mathcal{F}_1$ and scalars $\lambda_1, \ldots, \lambda_k$. Set $f_n = g_n - g_{n-1}$ for every $n \in \mathbb{N}$. Then $f = \sum_{n=1}^{\infty} f_n$ pointwise. Also, for $(n_1, \ldots, n_k) \in \mathcal{F}_1$ and $x \in K$ we have

$$\sum_{i=1}^{k} |f_{n_{i-1}+1} + \dots + f_{n_i}|(x) = \sum_{i=1}^{k} \varepsilon_i (f_{n_{i-1}+1} + \dots + f_{n_i})(x)$$

$$= \left| \sum_{i=1}^{k} \varepsilon_i (g_{n_i} - g_{n_{i-1}}) \right|(x) = \left| \sum_{i=1}^{k} (\varepsilon_i - \varepsilon_{i+1}) g_{n_i} \right|(x) \le |f|_s^1 + \epsilon,$$

where $\varepsilon_i \in \{-1,1\}$ so that $\varepsilon_i(f_{n_{i-1}+1} + \cdots + f_{n_i})(x) \ge 0$ for all $i = 1, \ldots, k$ and $\varepsilon_{k+1} = 0$. This gives that $||f||_D^1 \le ||f||_s^1$ for every $f \in B_{1/4}(K)$.

On the other hand, let $(g_n) \subseteq C(K)$ and C > 0 be such that $f = \sum_{n=1}^{\infty} g_n$ pointwise and

$$\left\| \sum_{i=1}^{k} |g_{n_{i-1}+1} + \dots + g_{n_i}| \right\|_{\infty} \le C \ (n_0 = g_0 = 0)$$

for every $(n_1, \ldots, n_k) \in \mathcal{F}_1$. Set $f_n = \sum_{i=1}^n g_i$ for every $n \in \mathbb{N}$. Of course $f_n \to f$ pointwise. Also, for $(n_1, \ldots, n_k) \in \mathcal{F}_1$, $x \in K$ and scalars $\lambda_1, \ldots, \lambda_k$ we have

$$\left| \sum_{i=1}^{k} \lambda_{i} f_{n_{i}} \right| (x) = \left| \sum_{i=1}^{k} \lambda_{i} (g_{1} + \dots + g_{n_{i}}) \right| (x)$$

$$= \left| \sum_{i=1}^{k} (\lambda_{i} + \dots + \lambda_{k}) \cdot (g_{n_{i-1}+1} + \dots + g_{n_{i}}) \right| (x)$$

$$\leq \left| \sum_{i=1}^{k} \left| \sum_{j=i}^{k} \lambda_{j} \right| \cdot \left| \sum_{j=n_{i-1}+1}^{n_{i}} g_{j} \right| (x)$$

$$\leq \left| \left| \sum_{i=1}^{k} \lambda_{i} s_{i} \right| \cdot \left(\sum_{i=1}^{k} \left| \sum_{j=n_{i-1}+1}^{n_{i}} g_{j} \right| \right) (x) \leq C \cdot \left| \left| \sum_{i=1}^{k} \lambda_{i} s_{i} \right| \right|.$$

Hence $f \in B_{1/4}(K)$ and $||f||_s^1 \le ||f||_D^1$. This completes the proof.

2.4. Corollary. For every compact metric space K, a function $f: K \to \mathbf{R}$ belongs to $B_{1/4}(K)$ if and only if there exists (f_n) in C(K) such that $f_n \to f$ pointwise and for $n_0 = f_0 = 0$,

$$\sup \left\{ \left\| \sum_{i=1}^k |f_{n_i} - f_{n_i-1}| \right\|_{\infty} : (n_1, \dots, n_k) \in \mathcal{F}_1 \right\} < \infty.$$

Also, for every $f \in B_{1/4}(K)$ we have

$$||f||_s^1 = \inf \left\{ \sup \left\{ \left\| \sum_{i=1}^k |f_{n_i} - f_{n_{i-1}}| \right\|_{\infty} : (n_1, \dots, n_k) \in \mathcal{F}_1 \right\} :$$

$$where (f_n) \subseteq C(K) \text{ and } f_n \to f \text{ pointwise } \right\}.$$

In the following theorem we will give a characterization of the functions in $B_{1/4}(K)$ and also an identity for $||f||_{1/4}$, where f is in $B_{1/4}(K)$, using the transfinite oscillations of f, which have been defined by H. Rosenthal in [R1]. We recall this definition.

2.5. **Definition.** [R1] Let K be a metric space. One defines the upper semicontinuous envelope $\mathcal{U}g$ of an extended real valued function $g: K \to [-\infty, +\infty]$ as follows:

$$\mathcal{U}g = \inf\{h : K \longrightarrow [-\infty, \infty] : h \text{ is continuous and } h \ge g\}.$$

It is easy to see that for $x \in K$

$$\mathcal{U}g(x) = \overline{\lim}_{y \to x} g(y) = \max \left\{ L \in [-\infty, +\infty] : \exists x_n \to x, g(x_n) \to L \right\}$$
$$= \inf \left\{ \sup_{y \in U} g(y) : U \text{ is a neighbourhood of } x \right\}.$$

In [R1] the author associates with each bounded function $f: K \to \mathbf{R}$ a transfinite increasing family $(\operatorname{osc}_{\alpha} f)_{1 \leq \alpha}$ of upper semicontinuous functions which are called α^{th} - oscillations of f. They have been defined by induction as follows:

$$osc_0 f = 0.$$

If $\operatorname{osc}_{\alpha} f$ has been defined, then for every $x \in K$

$$\widetilde{\operatorname{osc}}_{\alpha+1} f(x) = \overline{\lim}_{y \to x} \left(|f(y) - f(x)| + \operatorname{osc}_{\alpha} f(y) \right)$$

and consequently

$$\operatorname{osc}_{\alpha+1} f = \mathcal{U} \operatorname{osc}_{\alpha+1} f.$$

If α is a limit ordinal and $\operatorname{osc}_{\beta} f$ has been defined for all $\beta < \alpha$ then

$$\widetilde{\operatorname{osc}}_{\alpha} f = \sup_{\beta < \alpha} \operatorname{osc}_{\beta} f$$

and consequently

$$\operatorname{osc}_{\alpha} f = \mathcal{U} \operatorname{osc}_{\alpha} f$$
.

According to [R2], a bounded function $f: K \to \mathbf{R}$ is in D(K) if and only if $\operatorname{osc}_{\alpha} f$ is a bounded function for every ordinal α . In this case there exists an ordinal α so that $\operatorname{osc}_{\alpha} f$ is bounded and $\operatorname{osc}_{\alpha} f = \operatorname{osc}_{\beta} f$ for all $\beta > \alpha$. Moreover, letting τ be the least such α ,

$$||f||_D = |||f| + \operatorname{osc}_{\tau} f||_{\infty}$$
.

We will prove an analogous structural result for $B_{1/4}(K)$. Precisely, we will prove that a bounded function f is in $B_{1/4}(K)$ if and only if $\operatorname{osc}_{\omega} f$ is bounded and when this occurs then

$$||f||_{1/4} = |||f| + \widetilde{\operatorname{osc}}_{\omega} f||_{\infty}$$
.

Before the proof of this theorem we will give three lemmas. In the first lemma we list some elementary relations which are used in the sequel.

- 2.6. **Lemma.** Let f, g be bounded functions on a metric space K and α an ordinal number.
 - (1) If $f \leq g$ then $\mathcal{U}f \leq \mathcal{U}g$.
 - (2) $\mathcal{U}(f+g) \leq \mathcal{U}f + \mathcal{U}g$.
 - (3) $\mathcal{U}(f \mathcal{U}g) = \mathcal{U}(\mathcal{U}f \mathcal{U}g) \le \mathcal{U}(f g)$.
 - (4) Uf = f if and only if f is upper semicontinuous.
 - (5) $\operatorname{osc}_{\alpha} f$ is an upper semicontinuous $[0, +\infty]$ -valued function on K.
 - (6) $\operatorname{osc}_{\alpha} tf = |t| \operatorname{osc}_{\alpha} f$ for every $t \in \mathbf{R}$.
 - (7) $\operatorname{osc}_{\alpha}(f+g) \leq \operatorname{osc}_{\alpha}f + \operatorname{osc}_{\alpha}g$.
 - (8) $\operatorname{osc}_{\alpha}(f+g) = \operatorname{osc}_{\alpha}f$ if g is a continuous function on K.
 - (9) If $\operatorname{osc}_{\alpha} f$ is bounded then $U(\operatorname{osc}_{\alpha} f \pm f) \leq \widetilde{\operatorname{osc}}_{\alpha+1} f \pm f$.

Proof. The assertions (1)-(8) are easily proved. We will prove (9).

Let $x \in K$. We may choose (y_n) a sequence in K tending to x such that

$$\mathcal{U}(\operatorname{osc}_{\alpha} f + f)(x) = \lim_{n \to \infty} \operatorname{osc}_{\alpha} f(y_n) + f(y_n).$$

Since the functions f and $\operatorname{osc}_{\alpha}f$ are bounded, we may assume without loss of generality that the limits

$$\lim_{n \to \infty} \operatorname{osc}_{\alpha} f(y_n), \lim_{n \to \infty} |f(y_n) - f(x)|, \lim_{n \to \infty} f(y_n)$$

all exist. We then have that

$$\widetilde{\operatorname{osc}}_{\alpha+1}f(x) \geq \lim_{n \to \infty} \left(|f(y_n) - f(x)| + \operatorname{osc}_{\alpha}f(y_n) \right) \\
= \lim_{n \to \infty} |f(y_n) - f(x)| + \lim_{n \to \infty} \operatorname{osc}_{\alpha}f(y_n) \\
\geq \lim_{n \to \infty} \left(\operatorname{osc}_{\alpha}f(y_n) + f(y_n) \right) - f(x) \\
= \mathcal{U}(\operatorname{osc}_{\alpha}f + f)(x) - f(x).$$

Thus it is proved that $\mathcal{U}(\operatorname{osc}_{\alpha}f + f) \leq \widetilde{\operatorname{osc}}_{\alpha+1}f + f$. If instead of f we use -f, we have that $\mathcal{U}(\operatorname{osc}_{\alpha}f - f) \leq \widetilde{\operatorname{osc}}_{\alpha+1}f - f$, since $\widetilde{\operatorname{osc}}_{\alpha}f = \widetilde{\operatorname{osc}}_{\alpha}(-f)$.

2.7. **Lemma.** Let $f: K \to \mathbf{R}$ be a bounded function. For every $n \in \mathbf{N}$ we have that

$$\mathcal{U}(\operatorname{osc}_{n+2}f - \operatorname{osc}_{n+1}f) \le \mathcal{U}(\operatorname{osc}_{n+1}f - \operatorname{osc}_nf).$$

Proof. Using (3) of the previous lemma, we have that

$$\mathcal{U}(\operatorname{osc}_{n+2}f - \operatorname{osc}_{n+1}f) = \mathcal{U}(\widetilde{\operatorname{osc}}_{n+2}f - \operatorname{osc}_{n+1}f)$$

$$\leq \mathcal{U}(\widetilde{\operatorname{osc}}_{n+2}f - \widetilde{\operatorname{osc}}_{n+1}f), \text{ for every } n \in \mathbf{N}.$$

Hence it is sufficient to prove that

$$\mathcal{U}(\widetilde{\operatorname{osc}}_{n+2}f - \widetilde{\operatorname{osc}}_{n+1}f) \leq \mathcal{U}(\operatorname{osc}_{n+1}f - \operatorname{osc}_nf)$$
 for every $n \in \mathbb{N}$.

By (1) and (4) of the previous lemma, the proof of this lemma will be complete as soon as we prove that

$$\widetilde{\operatorname{osc}}_{n+2}f - \widetilde{\operatorname{osc}}_{n+1}f \leq \mathcal{U}(\operatorname{osc}_{n+1}f - \operatorname{osc}_nf)$$
 for every $n \in \mathbb{N}$.

Case n = 0. We have for $x \in K$,

$$\widetilde{\operatorname{osc}}_{2} f(x) - \widetilde{\operatorname{osc}}_{1} f(x) = \overline{\lim}_{y \to x} \left(\operatorname{osc}_{1} f(y) + |f(y) - f(x)| \right) - \overline{\lim}_{y \to x} |f(y) - f(x)| \\
\leq \overline{\lim}_{y \to x} \operatorname{osc}_{1} f(y) = \mathcal{U}(\operatorname{osc}_{1} f)(x) = \operatorname{osc}_{1} f(x)$$

(since $osc_1 f$ is upper semicontinuous).

In general for n > 0, $n \in \mathbb{N}$, we have for $x \in K$,

$$\widetilde{\operatorname{osc}}_{n+2}f(x) - \widetilde{\operatorname{osc}}_{n+1}f(x) \\
= \overline{\lim_{y \to x}} \left(\operatorname{osc}_{n+1}f(y) + |f(y) - f(x)| \right) - \overline{\lim_{y \to x}} \left(\operatorname{osc}_{n}f(y) + |f(y) - f(x)| \right) \\
\leq \overline{\lim_{y \to x}} \left(\operatorname{osc}_{n+1}f(y) - \operatorname{osc}_{n}f(y) \right) = \mathcal{U}(\operatorname{osc}_{n+1}f - \operatorname{osc}_{n}f)(x).$$

This completes the proof.

The following lemma was proved by A. Louveau ([F-L]). For completeness we give the proof. \Box

2.8. **Lemma.** [F-L] Let $(g_n)_{n=1}^{\infty}$ be a sequence of bounded, upper semicontinuous functions on a metric space K with $g_0 = 0$. If the sequence $(\mathcal{U}(g_{n+1} - g_n))_{n=0}^{\infty}$ is decreasing, then $\mathcal{U}(g_{n+1} - g_n) \leq \frac{1}{n+1} \cdot g_{n+1}$ for every $n \in \mathbb{N}$.

Proof. For n = 0, it reduces to $\mathcal{U}g_1 \leq g_1$, which is trivial since g_1 is upper semicontinuous. Suppose we know it for n. For the induction step, it suffices, since g_{n+2} is use, to prove:

$$g_{n+2} - g_{n+1} \le \frac{g_{n+2}}{n+2}$$
; i.e., $g_{n+2} \le \frac{g_{n+2}}{n+2} + g_{n+1}$.

But since $1 = \frac{1}{n+2} + \frac{n+1}{n+2}$, it suffices to show

$$\frac{n+1}{n+2}g_{n+2} \le g_{n+1}, \quad \text{i.e., } g_{n+2} \le \frac{n+2}{n+1}g_{n+1} = g_{n+1} + \frac{1}{n+1}g_{n+1}.$$

But this follows immediately from the induction step.

2.9. **Theorem.** Let K be a metric space. Then

$$B_{1/4}(K) = \left\{ f: K \to \mathbf{R} \text{ bounded } : \operatorname{osc}_{\omega} f \text{ is bounded } \right\} \quad and$$
$$\|f\|_{1/4} = \left\| |f| + \widetilde{\operatorname{osc}}_{\omega} f \right\|_{\infty} \text{ for all } f \in B_{1/4}(K).$$

Proof. Suppose $f \in B_{1/4}(K)$. It follows from the definition of $B_{1/4}(K)$ that for every $\epsilon > 0$ one has a sequence (g_n) in D(K) with $\|g_n - f\|_{\infty} \to 0$ and $\sup_n \|g_n\|_D < \|f\|_{1/4} + \epsilon$. Set $\epsilon_n = \|g_n - f\|_{\infty}$. Then by induction on k,

$$\operatorname{osc}_k f \leq \operatorname{osc}_k g_n + 2k\epsilon_n$$
 for every $k, n \in \mathbb{N}$.

Hence

$$|f| + \operatorname{osc}_{k} f \leq |g_{n}| + \epsilon_{n} + \operatorname{osc}_{k} g_{n} + 2k\epsilon_{n}$$

$$\leq |g_{n}| + \operatorname{osc}_{\tau} g_{n} + (2k+1)\epsilon_{n}$$

$$\leq ||g_{n}||_{D} + (2k+1)\epsilon_{n} \text{ for every } k, n \in \mathbf{N}.$$

Letting first $n \to \infty$ and then $k \to +\infty$, we get

$$|f| + \widetilde{\operatorname{osc}}_{\omega} f \le \sup_{n} ||g_n||_D \le ||f||_{1/4} + \epsilon.$$

Since ϵ is arbitrary, we have that

$$|||f| + \widetilde{\operatorname{osc}}_{\omega} f||_{\infty} \le ||f||_{1/4}$$

and of course that $\widetilde{\operatorname{osc}}_{\omega}f$ and, consequently, $\operatorname{osc}_{\omega}f$ are bounded functions.

On the other hand, let $f:K\to \mathbf{R}$ be a bounded function with $\mathrm{osc}_\omega f$ also bounded. Set

$$g_n = \frac{\lambda_n - \mathcal{U}(\operatorname{osc}_n f - f)}{2} - \frac{\lambda_n - \mathcal{U}(\operatorname{osc}_n f + f)}{2},$$

where $\lambda_n = ||f| + \operatorname{osc}_n f||_{\infty}$ for every $n \in \mathbb{N}$. Then $g_n \in D(K)$ and

$$||g_n||_D \le ||\lambda_n - \frac{1}{2}\mathcal{U}(\operatorname{osc}_n f - f) - \frac{1}{2}(\operatorname{osc}_n f + f)||_{\infty} \le$$

 $\le ||\lambda_n \le ||f| + \operatorname{osc}_{\omega} f||_{\infty} \text{ for every } n \in \mathbf{N}.$

The first inequality holds for every $n \in \mathbb{N}$, since from (1), (2) and (4) of Lemma 2.6 we have

$$\mathcal{U}(\operatorname{osc}_n f - f) + \mathcal{U}(\operatorname{osc}_n f + f) \ge 2\mathcal{U}(\operatorname{osc}_n f) = 2\operatorname{osc}_n f \ge 0$$
 and

$$\lambda_n - \frac{1}{2}\mathcal{U}(\operatorname{osc}_n f - f) - \frac{1}{2}\mathcal{U}(\operatorname{osc}_n f + f)$$

$$\geq \lambda_n - \mathcal{U}(\operatorname{osc}_n f + |f|) \geq \lambda_n - \|\mathcal{U}(\operatorname{osc}_n f + |f|)\|_{\infty}$$

$$= \lambda_n - \|\operatorname{osc}_n f + |f|\|_{\infty} = 0.$$

If we could prove that $||g_n - f||_{\infty} \to 0$, then we would have that $f \in B_{1/4}(K)$ and $||f||_{1/4} \le ||f| + \widetilde{\operatorname{osc}}_{\omega} f||_{\infty}$. Now, according to (9) of Lemma 2.6,

$$g_n - f = \frac{1}{2}\mathcal{U}(\operatorname{osc}_n f + f) - \frac{1}{2}\mathcal{U}(\operatorname{osc}_n f - f) - f$$

$$\leq \frac{1}{2}\left(\widetilde{\operatorname{osc}}_{n+1} f + f\right) - \frac{1}{2}(\operatorname{osc}_n f - f) - f$$

$$= \frac{1}{2}\left(\widetilde{\operatorname{osc}}_{n+1} f - \operatorname{osc}_n f\right) \leq \frac{1}{2}(\operatorname{osc}_{n+1} f - \operatorname{osc}_n f) \text{ for every } n \in \mathbf{N}.$$

On the other direction,

$$g_n - f = \frac{1}{2}\mathcal{U}(\operatorname{osc}_n f + f) - \frac{1}{2}\mathcal{U}(\operatorname{osc}_n f - f) - f$$

$$\geq \frac{1}{2}(\operatorname{osc}_n f + f) - \frac{1}{2}(\widetilde{\operatorname{osc}}_{n+1} f - f) - f$$

$$= -\frac{1}{2}(\widetilde{\operatorname{osc}}_{n+1} f - \operatorname{osc}_n f) \geq -\frac{1}{2}(\operatorname{osc}_{n+1} f - \operatorname{osc}_n f) \text{ for every } n \in \mathbf{N}.$$

Hence

$$|g_n - f| \le \frac{1}{2}(\operatorname{osc}_{n+1} f - \operatorname{osc}_n f)$$
 for every $n \in \mathbb{N}$.

According to Lemma 2.7, the sequence $(\mathcal{U}(\operatorname{osc}_{n+1}f - \operatorname{osc}_nf))_{n=0}^{\infty}$ is decreasing. Hence, using Lemma 2.8, we have that

$$|g_n - f| \leq \frac{1}{2}(\operatorname{osc}_{n+1} f - \operatorname{osc}_n f) \leq \frac{1}{2} \mathcal{U}(\operatorname{osc}_{n+1} f - \operatorname{osc}_n f)$$

$$\leq \frac{1}{n+1} \operatorname{osc}_{n+1} f \leq \frac{1}{n+1} \operatorname{osc}_{\omega} f \leq \frac{1}{n+1} \|\operatorname{osc}_{\omega} f\|_{\infty}.$$

Thus $||g_n - f||_{\infty} \le \frac{1}{n+1} \cdot ||\operatorname{osc}_{\omega} f||_{\infty}$ and, finally, $||g_n - f||_{\infty} \to 0$. This finishes the proof of the theorem.

2.10. Remark. Using the invariants $(f_{\alpha})_{1 \leq \alpha}$ which have been introduced by Kechris and Louveau in [K-L] and which are similar to the α^{th} - oscillations of the function f, we proved with Louveau ([F-L]) that a bounded function f is in $B_{1/4}(K)$ if and only if f_{ω} is bounded and in this case

$$\frac{1}{3} \|f_{\omega}\|_{\infty} \le \|f\|_{1/4} \le 4 \|f_{\omega}\|_{\infty} + 5 \|f\|_{\infty}.$$

But the previous theorem shows that the transfinite oscillations appear to be more appropriate than the f_{α} 's.

After proving this theorem, I learned that H. Rosenthal ([R2]) had an analogous result. Precisely, he proved in [R2] that f belongs to $B_{1/4}(K)$ (case $f: K \to \mathbb{C}$) if and only if $\operatorname{osc}_{\omega} f$ is bounded and when this occurs and f is real valued,

$$\frac{1}{2}(\|f\|_{\infty} + \|\operatorname{osc}_{\omega} f\|_{\infty}) \le \|f\|_{1/4} \le \|f\|_{\infty} + 3\|\operatorname{osc}_{\omega} f\|_{\infty}.$$

3. A Classification of
$$B_{1/4}(K)$$

We will define a classification of $B_{1/4}(K)$, where K is a separable metric space, into a decreasing hierarchy $(S_{\xi}(K))_{1 \leq \xi < \omega_1}$ of Banach spaces whose intersection is equal to D(K). The functions in $S_{\xi}(K)$ have a property stronger than the one of the functions in $B_{1/4}(K)$ which is described in Proposition 2.3. Precisely, the

families \mathcal{F}_{ξ} , which have been defined by D. Alspach and S. Argyros in [A-A], are used instead of the Schreier family \mathcal{F}_1 . We quote the definition of the \mathcal{F}_{ξ} 's.

3.1. **Definition** ([A-A]). For every limit ordinal ξ , let (ξ_n) be a sequence of ordinal numbers strictly increasing to ξ . Then $\mathcal{F}_0 = \{\{n\} : n \in \mathbb{N}\}$.

Suppose that \mathcal{F}_{ξ} is defined, then

$$\mathcal{F}_{\xi+1} = \{ F \subseteq \mathbf{N} : F \subseteq F_1 \cup \dots \cup F_n \text{ with } \{n\} < F_1 < \dots < F_n \text{ and } F_i \in \mathcal{F}_{\xi}$$
 for all $i = 1, \dots, n \}$.

If ξ is a limit ordinal, $\mathcal{F}_{\xi} = \{ F \subseteq \mathbf{N} : F \in \mathcal{F}_{\xi_n} \text{ and } \{n\} \leq F \}.$

Using the families \mathcal{F}_{ξ} , for every ordinal ξ , we extended the notion of spreading model in [F2] as follows:

3.2. **Definition** ([F2]). Let X be a Banach space, ξ an ordinal number and (x_n) a sequence in X. We say that (x_n) generates spreading model of order ξ equivalent to a basic sequence (e_n) if there exist $\mu > 0$ and C > 0 such that:

$$\mu \left\| \sum_{i=1}^k \lambda_i e_{n_i} \right\| \le \left\| \sum_{i=1}^k \lambda_i x_{n_i} \right\| \le C \left\| \sum_{i=1}^k \lambda_i e_{n_i} \right\|$$

for every $(n_1, \ldots, n_k) \in \mathcal{F}_{\xi}$ and scalars $\lambda_1, \ldots, \lambda_k$.

Now we will define the spaces $S_{\xi}(K)$ for every ordinal ξ , which are characterized by spreading models of order ξ equivalent to the summing basis (s_n) of c_0 .

3.3. **Definition.** Let K be a metric space and ξ an ordinal number. We define the space

$$S_{\xi}(K) = \left\{ f : K \to \mathbf{R} : \text{there exists } (f_n) \subseteq C(K) \text{ and } C > 0 \text{ such that } f_n \to f \text{ pointwise and } \|\sum_{i=1}^k \lambda_i f_{n_i}\|_{\infty} \le C \|\sum_{i=1}^k \lambda_i s_i\| \text{ for every } (n_1, \dots, n_k) \in \mathcal{F}_{\xi} \text{ and scalars } \lambda_1, \dots, \lambda_k \right\}$$

and the norm $\|\cdot\|_s^{\xi}$ on it as follows:

$$||f||_s^{\xi} = \inf \left\{ C > 0 : \text{there exists } (f_n) \subseteq C(K) \text{ such that } f_n \to f \text{ pointwise and } \|\sum_{i=1}^k \lambda_i f_{n_i}\|_{\infty} \le C \|\sum_{i=1}^k \lambda_i s_i\| \text{ for every } (n_1, \dots, n_k) \text{ in } \mathcal{F}_{\xi} \text{ and scalars } \lambda_1, \dots, \lambda_k \right\}$$

If K is a compact metric space, it is easy to prove (see Remark 1.2) that

$$S_{\xi}(K) \setminus C(K) = \left\{ f : K \to \mathbf{R} : \text{there exists } (f_n) \text{ in } C(K) \text{ such that } f_n \to f \text{ pointwise and } (f_n) \text{ generates spreading model} \right.$$
of order ξ equivalent to (s_n) .

Of course, $S_1(K) = B_{1/4}(K)$ for a compact metric space K. Also, for every ordinal number ξ , $S_{\xi}(K)$ is a linear subspace of $B_1(K)$. Although the family $(\mathcal{F}_{\xi})_{1 \leq \xi}$ is not increasing, it has the property: for every $1 \leq \beta < \xi$, there exists $n_0 = n_0(\beta, \xi)$ in \mathbb{N} such that if $A \in \mathcal{F}_{\beta}$ and $\{n_0\} \leq A$ then $A \in \mathcal{F}_{\xi}$. Hence, it is easy to prove that the family $(S_{\xi}(K))_{1 \leq \xi}$ is decreasing and, also, $\|f\|_s^{\beta} \leq \|f\|_s^{\xi}$ for every $1 \leq \beta < \xi$ and f in $S_{\xi}(K)$.

3.4. **Proposition.** For every ordinal number ξ , $(S_{\xi}(K), \|\cdot\|_{s}^{\xi})$ is a Banach space.

Proof. Let ξ be an ordinal number and (F_n) a Cauchy sequence in $(S_{\xi}(K), \|\cdot\|_s^{\xi})$. We can assume that $\|F_{n+1} - F_n\|_s^{\xi} < \frac{1}{2^n}$ for every $n \in \mathbb{N}$. So, for every $n \in \mathbb{N}$ we can find a sequence $(\phi_m^n)_{m=1}^{\infty} \subseteq C(K)$ converging pointwise to $F_{n+1} - F_n$ and satisfying

$$\left\| \sum_{i=1}^{k} \lambda_{i} \phi_{m_{i}}^{n} \right\|_{\infty} \leq \frac{1}{2^{n}} \left\| \sum_{i=1}^{k} \lambda_{i} s_{i} \right\|$$

for every $(m_1, \ldots, m_k) \in \mathcal{F}_{\xi}$ and scalars $\lambda_1, \ldots, \lambda_k$. Since $||f||_{\infty} \leq ||f||_s^{\xi}$ for every $f \in S_{\xi}(K)$, there exists $F \in B_1(K)$ such that $||F_n - F||_{\infty} \to 0$.

Let $n_0 \in \mathbf{N}$. Set $\Phi_n = F_{n+1} - F_n$ for every $n \in \mathbf{N}$, and $f_n = \phi_n^{n_0} + \cdots + \phi_n^n$ for every $n \ge n_0$. Then $F - F_{n_0} = \sum_{n=n_0}^{\infty} \Phi_n$. Also, $f_n \to F - F_{n_0}$ pointwise. Indeed,

$$||f_n - (\phi_n^{n_0} + \dots + \phi_n^l)||_{\infty} = ||\phi_n^{l+1} + \dots + \phi_n^n||_{\infty} \le \sum_{i=l+1}^n \frac{1}{2^i} = \frac{1}{2^l}$$

for every $n_0 \le l < n \in \mathbb{N}$. Hence, letting $n \to \infty$, we have for every $x \in K$ and $l \ge n_0$,

$$\Phi_{n_0}(x) + \dots + \Phi_l(x) - \frac{1}{2^l} \le \underline{\lim}_n f_n(x) \le \overline{\lim}_n f_n(x) \le \Phi_{n_0}(x) + \dots + \Phi_l(x) + \frac{1}{2^l}.$$

Letting $l \to \infty$, this gives that $f_n \to F - F_{n_0}$ pointwise.

On the other hand, for every $(n_1, \ldots, n_k) \in \mathcal{F}_{\xi}$ and scalars $\lambda_1, \ldots, \lambda_k$ we have that

$$\begin{split} \left\| \sum_{i=1}^{k} \lambda_{i} f_{n_{i}} \right\|_{\infty} &= \left\| \sum_{i=1}^{k} \left(\lambda_{i} \phi_{n_{i}}^{n_{0}} + \dots + \lambda_{i} \phi_{n_{i}}^{n_{i}} \right) \right\|_{\infty} \\ &\leq \sum_{j=n_{0}}^{n_{1}} \left\| \sum_{i=1}^{k} \lambda_{i} \phi_{n_{i}}^{j} \right\|_{\infty} + \sum_{j=n_{1}+1}^{n_{2}} \left\| \sum_{i=2}^{k} \lambda_{i} \phi_{n_{i}}^{j} \right\|_{\infty} + \dots + \sum_{j=n_{k-1}+1}^{n_{k}} |\lambda_{k}| \|\phi_{n_{k}}^{j}\|_{\infty} \\ &\leq \sum_{j=n_{0}}^{n_{1}} \frac{1}{2^{j}} \left\| \sum_{i=1}^{k} \lambda_{i} s_{i} \right\| + \sum_{j=n_{1}+1}^{n_{2}} \frac{1}{2^{j}} \left\| \sum_{i=2}^{k} \lambda_{i} s_{i} \right\| + \dots + \sum_{j=n_{k-1}+1}^{n_{k}} \frac{1}{2^{j}} \|\lambda_{k} s_{k}\| \\ &\leq \left(\sum_{j=n_{0}}^{\infty} \frac{1}{2^{j}} \right) \cdot 2 \cdot \left\| \sum_{i=1}^{k} \lambda_{i} s_{i} \right\| = \frac{1}{2^{n_{0}}} \cdot \left\| \sum_{i=1}^{k} \lambda_{i} s_{i} \right\|. \end{split}$$

Hence $F - F_{n_0} \in S_{\xi}(K)$, whence $F \in S_{\xi}(K)$. Also, we have that

$$||F - F_{n_0}||_s^{\xi} \le \frac{1}{2^{n_0}} \text{ for every } n_0 \in \mathbf{N},$$

which gives that (F_n) converges to F with respect to the $\|\cdot\|_s^{\xi}$ -norm. This completes the proof.

We will give more descriptions of the spaces $S_{\xi}(K)$ in analogy to $B_{1/4}(K)$ (see Proposition 2.3 and Corollary 2.4).

3.5. **Proposition.** For every metric space K and ordinal number ξ , a function $f: K \to \mathbf{R}$ belongs to $S_{\xi}(K)$ if and only if there exists (f_n) in C(K) such that $f = \sum_{n=1}^{\infty} f_n$ pointwise and for $n_0 = f_0 = 0$,

$$\sup \left\{ \left\| \sum_{i=1}^{k} |f_{n_{i-1}+1} + \dots + f_{n_i}| \right\|_{\infty} : (n_1, \dots, n_k) \in \mathcal{F}_{\xi} \right\} < \infty.$$

Also, for every $f \in S_{\xi}(K)$,

$$||f||_s^{\xi} = \inf \left\{ \sup \left\{ \left\| \sum_{i=1}^k |f_{n_{i-1}+1} + \dots + f_{n_i}| \right\|_{\infty} : (n_1, \dots, n_k) \in \mathcal{F}_{\xi} \right\} : for \ every \ (f_n) \ in \ C(K) \ with \ f = \sum_n f_n \ pointwise \right\}.$$

Proof. The proof is analogous to the proof of Proposition 2.3.

3.6. Corollary. For every metric space K and ordinal number ξ , a function $f: K \to \mathbf{R}$ belongs to $S_{\xi}(K)$ if and only if there exists (f_n) in C(K) such that $f_n \to f$ pointwise and for $n_0 = f_0 = 0$,

$$\sup \left\{ \left\| \sum_{i=1}^k |f_{n_i} - f_{n_i-1}| \right\|_{\infty} : (n_1, \dots, n_k) \in \mathcal{F}_{\xi} \right\} < \infty.$$

Also, for every $f \in S_{\xi}(K)$,

$$||f||_s^{\xi} = \inf \left\{ \sup \left\{ \left\| \sum_{i=1}^k |f_{n_i} - f_{n_{i-1}}| \right\|_{\infty} : (n_1, \dots, n_k) \in \mathcal{F}_{\xi} \right\} : for \ every \ (f_n) \subseteq C(K) \ with \ f_n \to f \ pointwise \right\}.$$

From a result in [F2], we have the following connection between the functions in $S_{\mathcal{E}}(K)$ and the transfinite oscillations.

3.7. **Theorem** ([F2]). Let K be a metric space and ξ an ordinal number. Then

$$S_{\xi}(K) \subseteq \left\{ f: K \to \mathbf{R} : \operatorname{osc}_{\omega^{\xi}} f \text{ is bounded } \right\}.$$

Proof. It follows from the proof of Theorem 9 in [F2] that, for every function f in $S_{\xi}(K)$, the function $u_{\omega\xi}(f)$ is bounded (the functions $u_{\alpha}(f)$, were introduced in [R1] and are similar to the α^{th} - oscillations of f). But, as it is proved in [R1],

$$\operatorname{osc}_{\alpha} f \leq u_{\alpha}(f) + u_{\alpha}(-f)$$

for every ordinal number α . Hence, $\operatorname{osc}_{\omega^{\xi}} f$ is bounded.

This theorem yields immediately the following result.

3.8. **Theorem.** Let K be a separable metric space. The intersection of all the classes $S_{\xi}(K)$, $1 \leq \xi < \omega_1$, is equal to D(K).

Proof. It follows from the previous theorem and the fact that f belongs to D(K) if and only if $\operatorname{osc}_{\alpha} f$ is bounded for every countable ordinal α ([R1]).

In [F2] we defined for every ordinal ξ the notion of a null-coefficient of order ξ (ξ -n.c.) sequence in a Banach space and we proved that every bounded, Baire-1 function f with $\operatorname{osc}_{\omega^{\xi}} f$ unbounded has the property that every bounded sequence of continuous functions converging pointwise to f is null-coefficient of order ξ . We will prove in the sequel that this property characterizes the functions in $B_1(K) \setminus S_{\xi}(K)$.

3.9. **Definition** ([F2]). A sequence (x_n) in a Banach space is called null-coefficient of order ξ (ξ -n.c), where ξ is an ordinal number, if whenever the scalars (c_n) satisfy:

$$\sup \left\{ \left\| \sum_{i=1}^{k} c_{n_{2i}} (x_{n_{2i}} - x_{n_{2i-1}}) \right\| : (n_1, \dots, n_{2k}) \in \mathcal{F}_{\xi} \right\} < \infty$$

the sequence (c_n) converges to 0.

3.10. **Proposition.** Let ξ be an ordinal number, and (x_n) a weak-Cauchy and non-weakly convergent sequence in a Banach space. Then (x_n) is not null-coefficient of order ξ if and only if it has a subsequence with spreading model of order ξ equivalent to the summing basis of c_0 .

Proof. If (x_n) is not null-coefficient of order ξ then there exists a bounded sequence of scalars (c_n) such that (c_n) is not null-converging and

(*)
$$\left\| \sum_{i=1}^{k} c_{n_{2i}} (x_{n_{2i}} - x_{n_{2i-1}}) \right\| \le 1$$

for every $(n_1, \ldots, n_{2k}) \in \mathcal{F}_{\xi}$.

So we can find $\epsilon > 0$ and a subsequence (c_{n_t}) of (c_n) such that $c_{n_t} > \epsilon$ for every $t \in \mathbf{N}$ (otherwise replace c_n by $-c_n$).

Consider $x_n, n \in \mathbb{N}$, as elements of C(K), where K is the unit ball of the dual of $X = [x_n]$, the closed subspace generated by (x_n) , with respect to the weak*-topology. Since (x_n) converges with respect to the w^* -topology to a function $x^{**} \in X^{**} \setminus X$ (Remark 1.2) there exists a subsequence (x_{n_t}) of (x_{n_t}) and $\mu > 0$ such that

$$\mu \left\| \sum_{i=1}^k \lambda_i s_i \right\| \le \left\| \sum_{i=1}^k \lambda_i x_{n_{t_i}} \right\|$$

for every $k \in \mathbf{N}$ and scalars $\lambda_1, \ldots, \lambda_k$. Set $y_s = x_{n_{t_s}}$ and $c_{n_{t_s}} = a_s$ for every $s \in \mathbf{N}$.

We will prove that the subsequence (y_s) of (x_n) has spreading model of order ξ equivalent to the summing basis (s_n) of c_0 . Indeed, for every $(s_1, \ldots, s_k) \in \mathcal{F}_{\xi}$ and $x \in K$ we have $y_{s_0} = y_0 = 0$ and

$$\begin{split} \sum_{i=1}^{k} |y_{s_{i}} - y_{s_{i-1}}|(x) &\leq \frac{1}{\epsilon} \sum_{i=1}^{k} a_{s_{i}} |y_{s_{i}} - y_{s_{i-1}}|(x) \\ &= \left| \frac{1}{\epsilon} \sum_{i=1}^{k} a_{s_{i}} \cdot \varepsilon_{s_{i}} (y_{s_{i}} - y_{s_{i-1}}) \right| (x) \quad \text{(where } \varepsilon_{s_{i}} \in \{-1, 1\}\text{)} \\ &\leq \frac{1}{\epsilon} a_{s_{1}} ||y_{s_{1}}|| + \frac{1}{\epsilon} \left| \sum_{\substack{i=2\\ i \text{ odd} \\ \varepsilon_{s_{i}} = 1}}^{k} a_{s_{i}} (y_{s_{i}} - y_{s_{i-1}}) \right| (x) \\ &+ \frac{1}{\epsilon} \left| \sum_{\substack{i=2\\ i \text{ oven} \\ \varepsilon_{s_{i}} = -1}}^{k} a_{s_{i}} (y_{s_{i}} - y_{s_{i-1}}) \right| (x) + \frac{1}{\epsilon} \left| \sum_{\substack{i=2\\ i \text{ even} \\ \varepsilon_{s_{i}} = 1}}^{\infty} a_{s_{i}} (y_{s_{i}} - y_{s_{i-1}}) \right| (x) \\ &+ \frac{1}{\epsilon} \left| \sum_{\substack{i=2\\ i \text{ even} \\ \varepsilon_{s_{i}} = -1}}^{\infty} a_{s_{i}} (y_{s_{i}} - y_{s_{i-1}}) \right| (x) \leq \frac{4}{\epsilon} + \frac{1}{\epsilon} \cdot ||(c_{n})||_{\infty} \cdot ||(||x_{n}||)||_{\infty} = C. \end{split}$$

In the last inequality we used (*) and the fact that every subset H of a set F belonging to \mathcal{F}_{ξ} is in \mathcal{F}_{ξ} as well and that $(n_{t_{s_1}}, \ldots, n_{t_{s_k}}) \in \mathcal{F}_{\xi}$ for every (s_1, \ldots, s_k) in \mathcal{F}_{ξ} .

Finally, for every $(s_1, \ldots, s_k) \in \mathcal{F}_{\xi}$ and scalars $\lambda_1, \ldots, \lambda_k$ we have

$$\left\| \sum_{i=1}^k \lambda_i y_{s_i} \right\| = \left\| \sum_{i=1}^k (\lambda_i + \dots + \lambda_k) (y_{s_i} - y_{s_{i-1}}) \right\| \le C \left\| \sum_{i=1}^k \lambda_i s_i \right\|,$$

which completes the proof.

3.11. **Theorem.** Let K be a metric space and ξ an ordinal number. Then

$$B_1(K) \setminus S_{\xi}(K) = \Big\{ f \in B_1(K) : \textit{every bounded sequence } (f_n) \textit{ in } C(K) \textit{ converging pointwise to } f \textit{ is null-coefficient of order } \xi \Big\}.$$

Proof. Let $f \in B_1(K) \setminus S_{\xi}(K)$ and a bounded sequence (f_n) in C(K) converging pointwise to f. Then (f_n) is null-coefficient of order ξ . Indeed, if (f_n) is not ξ -n.c., then according to the proof of the previous proposition, we can find a subsequence (g_n) of (f_n) and C > 0 such that

$$\left\| \sum_{i=1}^{k} |f_{n_i} - f_{n_{i-1}}| \right\|_{\infty} \le C$$

for all $(n_1, \ldots, n_k) \in \mathcal{F}_{\xi}$. Hence, it follows from Corollary 3.6 that $f \in S_{\xi}(K)$, a contradiction.

On the other hand, if $f \in S_{\xi}(K)$ then there exists a sequence $(f_n) \subseteq C(K)$ converging pointwise to f and C > 0 such that

$$\left\| \sum_{i=1}^{k} |f_{n_i} - f_{n_{i-1}}| \right\|_{\infty} \le C$$

for every $(n_1, \ldots, n_k) \in \mathcal{F}_{\xi}$, according to Corollary 3.6. Thus, if $c_n = 1$ for every $n \in \mathbb{N}$, we have

$$\left\| \sum_{i=1}^{k} (f_{n_{2i}} - f_{n_{2i-1}}) \right\|_{\infty} \leq \left\| \sum_{i=1}^{k} |f_{n_{2i}} - f_{n_{2i-1}}| \right\|_{\infty}$$

$$\leq \left\| \sum_{i=1}^{2k} |f_{n_{i}} - f_{n_{i-1}}| \right\|_{\infty} \leq C$$

for every $(n_1, \ldots, n_{2k}) \in \mathcal{F}_{\xi}$. Hence (f_n) is not null-coefficient of order ξ . This completes the proof.

3.12. Corollary. Let K be a compact metric space. Then

$$B_1(K) \setminus B_{1/4}(K) = \Big\{ f \in B_1(K) : \text{ every bounded sequence } (f_n) \text{ in } C(K) \\ \text{converging pointwise to } f \text{ is null-coefficient of order } 1 \Big\}.$$

References

- [A-A] D. Alspach and S. Argyros, Complexity of weally null sequences, Dissertationes Mathematicae 321 (1992), 44 pp. MR 93j:46014
- [C-M-R] F. Chaatit, V. Mascioni and H. Rosenthal, On functions of finite Baire index, (to appear).
- [F1] V. Farmaki, On Baire-1/4 functions and spreading models, Mathematika 41 (1994), 251-265. CMP 95:08
- [F2] V. Farmaki, Classifications of Baire-1 functions and c₀-spreading model, Trans. Amer. Math. Soc. 345 (1994), 819–831. MR 96c:46017

- [F-L] V. Farmaki and A. Louveau, On a classification of functions, (unpublished).
- [H-O-R] R. Haydon, E. Odell and H. Rosenthal, On certain classes of Baire-1 functions with applications to Banach space theory, Springer-Verlag Lecture Notes 1470 (1991), 1-35. MR 92h:46018
- [K-L] A.S. Kechris and A. Louveau, A classification of Baire class 1 functions, Trans. Amer. Math. Soc. 318 (1990), 209-236. MR 90f:26005
- [R1] H. Rosenthal, A characterization of Banach spaces containing c₀, J.A.M.S. 7 (1994), 707–745. MR 94i:46032
- [R2] H. Rosenthal, Differences of bounded semicontinuous functions I, (to appear)

Department of Mathematics, Panepistimiopolis, 15784, Athens, Greece $E\text{-}mail\ address$: vgeorgil@atlas.uoa.gr